School of Chemistry and Molecular Engineering, Seoul National University, Seoul 151-742, Korea
Yung Ja Park
Department of Chemistry, Sook Myung Women's University, Seoul 140-724, Korea
Received March 21, 2001

Abstract

Treatment of 4-chloro-5H-1,2,3-dithiazole-5-thione with alkyl 3-alkyl (or aryl)-3-amino-2-propenoates in the presence of pyridine (2 equivalents) in dichloromethane at reflux gave 2-[2-(1-alkenylsulfanyl-1-alkoxy-carbonyl-2-amino)-1,2-dicyanovinylsulfanyl]- 4 and -1,2-dicyanovinyldisulfanyl]-3-amino-2-alkenoic alkyl esters 7 in 16 to 60% and 8 to 48% yields, respectively.

J. Heterocyclic Chem., 39, 29 (2002).

Previously we reported that 4-chloro-5H-1,2,3-dithia-zol-5-one 1a acted as a good α-thiocyanating agent for α, β-unsaturated β-amino esters $2\left(\mathrm{R}^{3}=\mathrm{H}\right)$, yielding alkyl 3-amino-2-thiocyanato-2-alkenoates 3 ($\mathrm{R}^{3}=\mathrm{H}$) [1] (Scheme 1). This result prompted us to investigate the reactivity of 4-chloro-5 H -1,2,3-dithiazole-5-thione (1b) [2], analogous to $\mathbf{1 a}$, toward the same β-enamino esters. The results are described herein.
chromatography and high performance liquid chromatography [(μ Bodapak C18, $10 \mu \mathrm{~m}, 7.8 \times 300 \mathrm{~mm}$ ID), differential refractometer, acetonitrile]. Of the isolated compounds, compound 5 was obtained by treatment of compound 1a with compound $\mathbf{2 b}$ under the same conditions [1].

A survey of the literature shows that cis-bis(2,3-dialkylthio)-2-butenedinitriles such as 1,2-dicyano-3,6-dithiacyclohexene [3] and cis-2,3-bis(benzylthio)-2-butenedinitrile

Scheme 1

Results and Discussion.
Treatment of compound $\mathbf{1 b}$ with compound $\mathbf{2 b}\left(\mathrm{R}^{1}=\mathrm{Me}\right.$, $\mathrm{R}^{2}=\mathrm{Et}, \mathrm{R}^{3}=\mathrm{H}$) (2.6 equivalents) in dimethyl sulfoxide (10 $\mathrm{ml})$ for 4 days at room temperature gave 3 -amino-2-[2-(2-amino-1-ethoxycarbonylpropenylsulfanyl)-1,2-dicyanovinylsulfanyl]-2-butenoic ethyl ester $\mathbf{4 b}\left(\mathrm{x}=1, \mathrm{R}^{1}=\right.$ $\mathrm{Me}, \mathrm{R}^{2}=\mathrm{Et}, \mathrm{R}^{3}=\mathrm{H}$) (18%) together with 1,4-thiazine derivative 5 (10\%), tetrasulfide $\mathbf{6}$ (13\%), a minute amount of sulfur, and unknown mixtures, which were inseparable by
[4], analogous to compound $\mathbf{4 b}$ as far as the bis(2,3-dithio)-2butenedinitrile moiety is concerned, are important as starting materials for the synthesis of alkylthioporphyrazines.

The reaction was completed in 24 hours at $40^{\circ} \mathrm{C}$ under the same conditions to give somewhat increased yields of compounds $\mathbf{4 b}$ (27%) and 5 (40%) along with sulfur, unknown mixtures, and unreacted β-amino esters $\mathbf{2 b}$ (11%). No compound 6 was detected. The reaction did not proceed in dichloromethane at reflux temperature. Heating compounds $\mathbf{1 b}, \mathbf{2 b}$, and pyridine (2 equivalents) in dichloromethane for

24 hours at reflux resulted in the formation of $\mathbf{4 b}$ (33\%), $\mathbf{5}$ (11%), sulfur, and an unknown mixture with recovery of unreacted $\mathbf{2 b}$ (5\%). Notably, an additional new compound 7b $\left(x=2, R^{1}=M e, R^{2}=E t, R^{3}=H\right)$, having three sulfur atoms, was isolated in 8% yield (Scheme 1).

Compound $\mathbf{4 b}$ was a powder-type of solid, which showed eight ${ }^{13} \mathrm{C} \mathrm{nmr}$ (75 MHz , deuteriochloroform) signals and had mass number (m / z) 396, corresponding to the molecular weight of a compound having the molecular for-
mula $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{~S}_{2}$. The spectroscopic data indicates that compound $\mathbf{4 b}$ is a symmetric molecule. All other data including ${ }^{1} \mathrm{H} \mathrm{nmr}$ and elemental analysis are compatible with the expected structure. For compound $\mathbf{7 b}$, fab ms had mass number $(\mathrm{m} / \mathrm{z}) 429\left(\mathrm{M}^{+}+1\right)$. The mass number of the molecular ion $\left(\mathrm{M}^{+}\right)$is 32 units greater than the molecular weight of compound $\mathbf{4 b}$, and sixteen ${ }^{13} \mathrm{C} \mathrm{nmr}$ signals, twice the number of those exhibited by compound $\mathbf{4 b}$, were observed. The ${ }^{1} \mathrm{H} \mathrm{nmr}$ (300 MHz , deuteriochloro-

Table 1
Reaction Conditions and Yields and Melting Points of Compounds 4 and 7

R^{1}		Compounds 2		Compound 1b mmoles mmoles		Temp [a]	Time hours	Compounds 4			Compounds 7			S_{8}	
		R^{2}	R^{3}					eld (\%)	$\mathrm{Mp}\left({ }^{\circ}\right.$)		ld (\%)	$\mathrm{Mp}\left({ }^{\circ}\right.$)	mg		
a	Me	Me	H	1.24	0.78		rt	15	a	16	184-186(dec) [b]	a	48	140-142 [b]	8
b	Me	Et	H	1.56	0.97	reflux	24	b	33 [d]	173-176 [b]	b	8	liquid	25	
c	Et	Et	H	0.85	0.71	reflux	7	c	28	168-169 [c]	c	22	liquid	22	
d	CF_{3}	Et	H	2.45	1.66	reflux	192	d	0		d	34	liquid	58	
e	Ph	Et	H	0.81	0.60	reflux	13	e	28 [e]	168-170 [b]	e	29	liquid	24	
f	4-MeOC66 H_{4}	Et	H	1.86	0.83	reflux	20	f	60	162-164 [b]	f	0		38	
g	$4-\mathrm{MeC}_{6} \mathrm{H}_{4}$	Et	H	0.99	0.85	reflux	19	g	23	206-208 [b]	g	29	liquid	21	
h	$4-\mathrm{BrC}_{6} \mathrm{H}_{4}$	Et	H	0.73	0.61	reflux	14	h	27	liquid	h	27	liquid	22	
i	$3-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4}$	Et	H	0.69	0.60	reflux	19	i	29	218-220 [b]	i	31	liquid	15	
j	Me	Et	Bn	1.00	0.85	rt	14	j	13	136-138 [c]	j	0		23	
k	Me	Et	$i-\mathrm{Pr}$	2.84	1.40	rt	9	k	30	liquid	k	0		22	
1	Me	Et	$4-\mathrm{ClC}_{6} \mathrm{H}_{4}$	1.49	1.24	rt	7	1	11	182-184 [c]		0		50	

[a] Apart from the reactions with compounds $\mathbf{2 b} \mathbf{- i}$, the reactions with compounds $\mathbf{2 a}$ and $\mathbf{2} \mathbf{j} \mathbf{-} \mathbf{l}$ occurred at room temperature (rt). [b] From a mixture of dichloromethane and n-hexane. [c] From a mixture of chloroform and n-hexane. [d] In addition, 2,6-diethoxycarbonyl-3,5-dimethyl-1,4-thiazine 5 (11\%) was isolated. [e] In addition, 4-ethoxycarbonyl-3-phenylisothiazole-5-carbonitrile 8 (36\%) was isolated.

Table 2
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR, IR, and MS Spectral and Analytical Data of 4 and 7

Compounds	${ }^{1} \mathrm{H}$ NMR (deuteriochloroform) δ (ppm)	${ }^{13}$ C NMR (deuteriochloroform) δ (ppm)	IR (neat) (cm^{-1})	FAB MS (m/z, \%)	Molecular Formula	Analyses \% Calcd/Found			
						C	H	N	S
4a [b]	$\begin{aligned} & 2.22\left(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{CH}_{3}\right), 3.61(\mathrm{~s}, 6 \mathrm{H} \\ & \left.2 \mathrm{OCH}_{3}\right), 8.57(\mathrm{~s}, 2 \mathrm{H}, 2 \mathrm{NH}), 9.17 \\ & (\mathrm{~s}, 2 \mathrm{H}, 2 \mathrm{NH}) \end{aligned}$	$\begin{aligned} & 22.7,52.1,77.4,113.4, \\ & 124.5,169.4 \\ & 171.4 \end{aligned}$	$\begin{aligned} & 3440,3312, \\ & 3232,2208, \\ & 1648 \end{aligned}$	$\begin{aligned} & 369 \\ & \left(\mathrm{M}^{+}+1\right) \end{aligned}$	$\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{~S}_{2}$	$\begin{aligned} & 45.56 \\ & 45.64 \end{aligned}$	$\begin{aligned} & 4.38 \\ & 4.48 \end{aligned}$	$\begin{aligned} & 15.21 \\ & 15.34 \end{aligned}$	$\begin{aligned} & 17.41 \\ & 17.22 \end{aligned}$
4b [b]	$\begin{aligned} & 1.30\left(\mathrm{t}, 6 \mathrm{H}, \mathrm{~J}=7.1 \mathrm{~Hz}, 2 \mathrm{CH}_{3}\right), \\ & 2.46\left(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{CH}_{3}\right), 4.21(\mathrm{q}, 4 \mathrm{H}, \\ & \left.\mathrm{J}=7.1 \mathrm{~Hz}, 2 \mathrm{OCH}_{2}\right), 5.43(\mathrm{~s}, \\ & 2 \mathrm{H}, 2 \mathrm{NH}), 9.27(\mathrm{~s}, 2 \mathrm{H}, 2 \mathrm{NH}) \end{aligned}$	14.7, 23.6, 61.0, 80.9, 112.9,124.3, 169.3, 169.4	$\begin{aligned} & 3440,3328, \\ & 2208,1645, \\ & 1619,1606, \\ & 1514,1216, \\ & 1165,1059, \\ & 774 \end{aligned}$	$\begin{aligned} & 397 \\ & \left(\mathrm{M}^{+}+1\right) \end{aligned}$	$\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{~S}_{2}$	$\begin{aligned} & 48.42 \\ & 48.47 \end{aligned}$	$\begin{aligned} & 5.08 \\ & 5.10 \end{aligned}$	$\begin{aligned} & 14.13 \\ & 14.23 \end{aligned}$	$\begin{aligned} & 16.18 \\ & 16.01 \end{aligned}$
4c [b]	$\begin{aligned} & 1.25\left(\mathrm{t}, 6 \mathrm{H}, \mathrm{~J}=7.6 \mathrm{~Hz}, 2 \mathrm{CH}_{3}\right), 1.32 \\ & \left(\mathrm{t}, 6 \mathrm{H}, \mathrm{~J}=7.1 \mathrm{~Hz}, 2 \mathrm{CH}_{3}\right), 2.67(\mathrm{q}, \\ & \left.4 \mathrm{H}, \mathrm{~J}=7.6 \mathrm{~Hz}, 2 \mathrm{XCH}_{2}\right), 4.22(\mathrm{q}, 4 \mathrm{H}, \\ & \left.\mathrm{J}=7.1 \mathrm{~Hz}, 2 \mathrm{OCH}_{2}\right), 5.74(\mathrm{~s}, \mathrm{br}, 2 \mathrm{H}, \\ & 2 \mathrm{NH}), 9.52(\mathrm{~s}, 2 \mathrm{H}, \mathrm{br}, 2 \mathrm{NH}) \end{aligned}$	$\begin{aligned} & 12.2,14.4,29.3,60.6 \\ & 79.4,112.6,124.0 \\ & 169.1,173.5 \end{aligned}$	$\begin{aligned} & 3456,3328 \\ & 3232,2208 \\ & 1648,1619 \end{aligned}$	$\begin{aligned} & 425 \\ & \left(\mathrm{M}^{+}+1\right) \end{aligned}$	$\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{~S}_{3}$	$\begin{aligned} & 50.92 \\ & 50.85 \end{aligned}$	$\begin{aligned} & 5.70 \\ & 5.72 \end{aligned}$	$\begin{aligned} & 13.20 \\ & 13.40 \end{aligned}$	$\begin{aligned} & 15.11 \\ & 15.25 \end{aligned}$
4e [b]	$\begin{aligned} & 1.26\left(\mathrm{t}, 6 \mathrm{H}, \mathrm{~J}=7.1 \mathrm{~Hz}, 2 \mathrm{CH}_{3}\right), 4.19 \\ & \left(\mathrm{q}, 4 \mathrm{H}, \mathrm{~J}=7.1 \mathrm{~Hz}, 2 \mathrm{OCH}_{2}\right), 5.53 \\ & (\mathrm{br}, \mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 5.55(\mathrm{~s}, \mathrm{br}, 1 \mathrm{H}, \mathrm{NH}), \\ & 7.30-7.45(\mathrm{~m}, 10 \mathrm{H}, \mathrm{ArH}) \\ & 9.42(\mathrm{~s}, \mathrm{br}, 2 \mathrm{H}, 2 \mathrm{NH}) \end{aligned}$	$\begin{aligned} & 14.4,60.8,81.5, \\ & \text { 112.8, 123.6, 127.6, } \\ & 128.5,129.9,137.0, \\ & 169.0,169.9 \end{aligned}$	$\begin{aligned} & 3408,3296, \\ & 2208,1651, \\ & 1590 \end{aligned}$	$520\left(\mathrm{M}^{+}\right)$	$\mathrm{C}_{26} \mathrm{H}_{24} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{~S}_{2}$	$\begin{aligned} & 59.98 \\ & 60.11 \end{aligned}$	$\begin{aligned} & 4.65 \\ & 4.64 \end{aligned}$	$\begin{aligned} & 10.76 \\ & 10.92 \end{aligned}$	$\begin{aligned} & 12.32 \\ & 12.20 \end{aligned}$
4 f [b]	$1.25\left(\mathrm{t}, 6 \mathrm{H}, \mathrm{J}=7.1 \mathrm{~Hz}, 2 \mathrm{CH}_{3}\right), 3.82(\mathrm{~s}$, $\left.6 \mathrm{H}, 2 \mathrm{OCH}_{3}\right), 4.17(\mathrm{q}, 4 \mathrm{H}, \mathrm{J}=7.1 \mathrm{~Hz}$, $2 \mathrm{OCH}_{2}$), $5.70(\mathrm{~s}, \mathrm{br}, 2 \mathrm{H}, 2 \mathrm{NH}), 6.89$ (d, 4H, J = $8.7 \mathrm{~Hz}, \mathrm{ArH}$), 7.27 (d, 4H, $\mathrm{J}=8.7 \mathrm{~Hz}, \mathrm{ArH}), 9.40(\mathrm{~s}, \mathrm{br}, 2 \mathrm{H}, 2 \mathrm{NH})$	$\begin{aligned} & 14.7,55.8,61.1,81.4, \\ & 113.3,114.2,124.0, \\ & 129.5,129.8,161.1, \\ & 169.5,170.2 \end{aligned}$	$\begin{aligned} & 3408,3296, \\ & 2976,2208, \\ & 1651,1597 \end{aligned}$	$580\left(\mathrm{M}^{+}\right)$	$\mathrm{C}_{28} \mathrm{H}_{28} \mathrm{~N}_{4} \mathrm{O}_{6} \mathrm{~S}_{2}$	$\begin{aligned} & 57.92 \\ & 57.94 \end{aligned}$	$\begin{aligned} & 4.86 \\ & 4.90 \end{aligned}$	$\begin{aligned} & 9.65 \\ & 9.55 \end{aligned}$	$\begin{aligned} & 11.04 \\ & 11.22 \end{aligned}$

Table 2 (continued)

Compounds	${ }^{1} \mathrm{H}$ NMR (deuteriochloroform)	${ }^{13} \mathrm{C}$ NMR (deuteriochloroform)	IR (neat)	FAB MS ($\mathrm{m} / \mathrm{z}, \%$)	Molecular Formula		nalyses cd/Fo		
	δ (ppm)	δ (ppm)	$\left(\mathrm{cm}^{-1}\right)$			C	H	N	S
4g [b]	$\begin{aligned} & 1.27\left(\mathrm{t}, 6 \mathrm{H}, \mathrm{~J}=7.0 \mathrm{~Hz}, 2 \mathrm{CH}_{3}\right), 2.38(\mathrm{~s}, \\ & \left.6 \mathrm{H}, 2 \mathrm{CH}_{3}\right), 4.19(\mathrm{q}, 4 \mathrm{H}, \mathrm{~J}=7.1 \mathrm{~Hz}, \\ & \left.2 \mathrm{CH}_{2}\right), 5.51(\mathrm{~s}, \mathrm{br}, 2 \mathrm{H}, 2 \mathrm{NH}), 7.13-7.24 \\ & (\mathrm{~m}, 8 \mathrm{H}, \mathrm{ArH}), 9.42(\mathrm{~s}, \mathrm{br}, 2 \mathrm{H}, 2 \mathrm{NH}) \end{aligned}$	$\begin{aligned} & 14.3,21.4,60.7,81.4, \\ & 112.9,123.7,127.6, \\ & 129.2,134.2,140.1, \\ & 169.0,170.0 \end{aligned}$	$\begin{aligned} & 3360,3280, \\ & 2976,2208, \\ & 1648 \end{aligned}$	548 (M^{+})	$\mathrm{C}_{28} \mathrm{H}_{28} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{~S}_{2}$	$\begin{aligned} & 61.29 \\ & 61.35 \end{aligned}$	$\begin{aligned} & 5.14 \\ & 5.16 \end{aligned}$	$\begin{aligned} & 10.21 \\ & 10.32 \end{aligned}$	$\begin{aligned} & 11.69 \\ & 11.54 \end{aligned}$
4h	$\begin{aligned} & 1.27\left(\mathrm{t}, 6 \mathrm{H}, \mathrm{~J}=7.1 \mathrm{~Hz}, 2 \mathrm{CH}_{3}\right), 4.21 \\ & \left(\mathrm{q}, 4 \mathrm{H}, \mathrm{~J}=7.1 \mathrm{~Hz}, 2 \mathrm{OCH}_{2}\right), 5.57(\mathrm{~s}, \\ & \mathrm{br}, 2 \mathrm{H}, 2 \mathrm{NH}), 7.24(\mathrm{~d}, 4 \mathrm{H}, \mathrm{~J}=8.4 \mathrm{~Hz} \\ & \mathrm{ArH}), 7.58(\mathrm{~d}, 4 \mathrm{H}, \mathrm{~J}=8.4 \mathrm{~Hz} \\ & \operatorname{ArH}), 9.42(\mathrm{~s}, \mathrm{br}, 2 \mathrm{H}, 2 \mathrm{NH}) \end{aligned}$	$\begin{aligned} & 14.3,60.9,81.7,112.7, \\ & 123.5,124.4,129.3, \\ & 131.9,135.6,168.7, \\ & 168.7 \end{aligned}$	$\begin{aligned} & 3424,3296, \\ & 2976,2208, \\ & 1651,1590 \end{aligned}$	$678\left(\mathrm{M}^{+}\right)$	$\mathrm{C}_{26} \mathrm{H}_{22} \mathrm{Br}_{2} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{~S}_{2}$	$\begin{aligned} & 46.03 \\ & 46.18 \end{aligned}$	$\begin{aligned} & 3.27 \\ & 3.30 \end{aligned}$	$\begin{aligned} & 8.26 \\ & 8.22 \end{aligned}$	$\begin{aligned} & 9.45 \\ & 9.60 \end{aligned}$
4 i [b]	$1.26\left(\mathrm{t}, 6 \mathrm{H}, \mathrm{J}=7.1 \mathrm{~Hz}, 2 \mathrm{CH}_{3}\right), 4.22$ (q, 4H, J = 7.1 Hz, 2OCH 2), $5.68(\mathrm{~s}, \mathrm{br}$, $2 \mathrm{H}, 2 \mathrm{NH}$), 7.60-7.73 (m, 4H, ArH), 8.18 (s, 2H, ArH), 8.30 (d, 2H, J = $7.7 \mathrm{~Hz}, \mathrm{ArH}$), 9.46 (s, br, 2H, 2NH)	$\begin{aligned} & 14.2,61.2,82.4,112.5, \\ & 122.9,123.4,124.8, \\ & 130.0,133.8,138.0, \\ & 147.9,166.9,168.4 \end{aligned}$	$\begin{aligned} & 3408,3296, \\ & 2976,2208, \\ & 1654,1590 \end{aligned}$	$610\left(\mathrm{M}^{+}\right)$	$\mathrm{C}_{26} \mathrm{H}_{22} \mathrm{~N}_{6} \mathrm{O}_{8} \mathrm{~S}_{2}$	$\begin{aligned} & 51.14 \\ & 51.22 \end{aligned}$	$\begin{aligned} & 3.63 \\ & 3.63 \end{aligned}$	$\begin{aligned} & 13.76 \\ & 13.82 \end{aligned}$	$\begin{aligned} & 10.50 \\ & 10.55 \end{aligned}$
4j [b]	$\begin{aligned} & 1.28\left(\mathrm{t}, 6 \mathrm{H}, \mathrm{~J}=7.0 \mathrm{~Hz}, 2 \mathrm{CH}_{3}\right), 2.34 \\ & \left(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{CH}_{3}\right), 4.18(\mathrm{q}, 4 \mathrm{H}, \mathrm{~J}=7.1 \mathrm{~Hz} \\ & \left.2 \mathrm{OCH}_{2}\right), 4.55(\mathrm{~d}, 4 \mathrm{H}, \mathrm{~J}=6.0 \mathrm{~Hz} \\ & \left.2 \mathrm{CH}_{2}\right), 7.28-7.40(\mathrm{~m}, 10 \mathrm{H}, \mathrm{ArH}) \\ & 10.71(\mathrm{~s}, \mathrm{br}, 2 \mathrm{H}, 2 \mathrm{NH}) \end{aligned}$	$\begin{aligned} & 14.8,18.1,48.7,60.9 \\ & 79.9,113.0,124.6, \\ & 127.2,128.2,129.5, \\ & 137.2,170.2,170.6 \end{aligned}$	$\begin{aligned} & 3200,2992, \\ & 2224,1638, \\ & 1578 \end{aligned}$	576 (${ }^{+}$)	$\mathrm{C}_{30} \mathrm{H}_{32} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{~S}_{2}$	$\begin{aligned} & 62.48 \\ & 62.58 \end{aligned}$	$\begin{aligned} & 5.59 \\ & 5.60 \end{aligned}$	$\begin{aligned} & 9.71 \\ & 9.64 \end{aligned}$	$\begin{aligned} & 11.12 \\ & 11.24 \end{aligned}$
4k	$\begin{aligned} & 1.24-1.31\left(\mathrm{~m}, 18 \mathrm{H}, 6 \mathrm{CH}_{3}\right), 2.34 \\ & \left(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{CH}_{3}\right), 3.80-3.84(\mathrm{~m}, 2 \mathrm{H}, \\ & 2 \mathrm{CH}), 4.17(\mathrm{q}, 4 \mathrm{H}, \mathrm{~J}=7.1 \mathrm{~Hz}, \\ & \left.2 \mathrm{OCH}_{2}\right), 10.34(\mathrm{~s}, 2 \mathrm{H}, 2 \mathrm{NH}) \end{aligned}$	$\begin{aligned} & 14.5,17.5,23.6,46.5 \\ & 60.3,77.9,112.7, \\ & 124.3,168.6,170.0 \end{aligned}$	$\begin{aligned} & 3216,2976, \\ & 2208,1677 \end{aligned}$	480 (${ }^{+}$)	$\mathrm{C}_{22} \mathrm{H}_{32} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{~S}_{2}$	$\begin{gathered} 54.98 \\ 55.14 \end{gathered}$	$\begin{aligned} & 6.71 \\ & 6.75 \end{aligned}$	$\begin{aligned} & 11.66 \\ & 11.60 \end{aligned}$	$\begin{aligned} & 13.34 \\ & 13.28 \end{aligned}$
41 [b]	$\begin{aligned} & 1.33\left(\mathrm{t}, 6 \mathrm{H}, \mathrm{~J}=7.1 \mathrm{~Hz}, 2 \mathrm{CH}_{3}\right), 2.29 \\ & \left(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{CH}_{3}\right), 4.24(\mathrm{q}, 4 \mathrm{H}, \mathrm{~J}=7.1 \mathrm{~Hz}, \\ & \left.2 \mathrm{OCH}_{2}\right), 7.10(\mathrm{~d}, 4 \mathrm{H}, \mathrm{~J}=8.6 \mathrm{~Hz} \\ & \mathrm{ArH}), 7.37(\mathrm{~d}, 4 \mathrm{H}, \mathrm{~J}=8.6 \mathrm{~Hz}, \\ & \mathrm{ArH}), 11.87(\mathrm{~s}, 2 \mathrm{H}, 2 \mathrm{NH}) \end{aligned}$	$\begin{aligned} & 14.4,19.3,60.9,82.4, \\ & 112.5,123.9,127.3, \\ & 129.6,132.9,136.6, \\ & 168.2,169.6 \end{aligned}$	$\begin{aligned} & 3168,2976, \\ & 2208,1632, \\ & 1581 \end{aligned}$	$\begin{aligned} & 616 \\ & \left(\mathrm{M}^{+}+1\right) \end{aligned}$	$\mathrm{C}_{28} \mathrm{H}_{26} \mathrm{Cl}_{2} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{~S}_{2}$	$\begin{aligned} & 54.46 \\ & 54.44 \end{aligned}$	$\begin{aligned} & 4.24 \\ & 4.24 \end{aligned}$	$\begin{aligned} & 9.07 \\ & 9.03 \end{aligned}$	$\begin{aligned} & 10.38 \\ & 10.42 \end{aligned}$
7a [a] [b]	$\begin{aligned} & 2.26\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.47\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), \\ & 3.74\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.80(\mathrm{~s}, 3 \mathrm{H}, \\ & \left.\mathrm{OCH}_{3}\right), 5.67(\mathrm{~s}, \mathrm{br}, 2 \mathrm{H}, 2 \mathrm{NH}), \\ & 9.43(\mathrm{~s}, \mathrm{br}, 2 \mathrm{H}, 2 \mathrm{NH}) \end{aligned}$	$\begin{aligned} & 23.2,23.5,51.6,51.9 \\ & 80.2,88.6,112.0,114.1 \\ & 119.4,133.5,169.1 \\ & 169.2,169.5,170.0 \end{aligned}$	$\begin{aligned} & 3424,3296, \\ & 2208,1668 \end{aligned}$	$\begin{aligned} & 401 \\ & \left(\mathrm{M}^{+}+1\right) \end{aligned}$	$\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{~S}_{3}$	$\begin{aligned} & 41.99 \\ & 42.12 \end{aligned}$	$\begin{aligned} & 4.03 \\ & 4.13 \end{aligned}$	$\begin{aligned} & 13.99 \\ & 13.82 \end{aligned}$	$\begin{aligned} & 24.02 \\ & 24.11 \end{aligned}$
7b	$1.28\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=7.3 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.37(\mathrm{t}$, $3 \mathrm{H}, \mathrm{J}=7.1 \mathrm{~Hz}, \mathrm{CH}_{3}$), $2.22(\mathrm{~s}, 3 \mathrm{H}$, CH_{3}), 2.45 (s, $3 \mathrm{H}, \mathrm{CH}_{3}$), 4.17-4.25 $\left(\mathrm{m}, 4 \mathrm{H}, 2 \mathrm{OCH}_{2}\right), 5.87(\mathrm{~s}, \mathrm{br}, 1 \mathrm{H}, \mathrm{NH})$, 5.92 (s, br, 1H, NH), 9.38 (s, br, 1H, NH), 9.40 (s, br, 1H, NH)	$\begin{aligned} & 14.8,14.9,23.4,23.8, \\ & 60.9,61.0,80.5,88.9 \\ & 112.5,114.7,119.5 \\ & 134.5,169.2,169.5 \\ & 170.0,170.1 \end{aligned}$	$\begin{aligned} & 3408,3312, \\ & 2208,1651 \end{aligned}$	$\begin{aligned} & 429 \\ & \left(\mathrm{M}^{+}+1\right) \end{aligned}$	$\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{~S}_{3}$	$\begin{aligned} & 44.84 \\ & 44.72 \end{aligned}$	$\begin{aligned} & 4.70 \\ & 4.74 \end{aligned}$	$\begin{aligned} & 13.07 \\ & 13.20 \end{aligned}$	$\begin{aligned} & 22.45 \\ & 22.35 \end{aligned}$
7c	$1.18-1.32\left(\mathrm{~m}, 9 \mathrm{H}, 3 \mathrm{CH}_{3}\right), 1.39(\mathrm{t}$, $\left.3 \mathrm{H}, \mathrm{J}=7.1 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 2.56(\mathrm{q}, 2 \mathrm{H}$, $\left.\mathrm{J}=7.6 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 2.86(\mathrm{q}, 2 \mathrm{H}$, $\left.\mathrm{J}=7.5 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 4.16-4.28(\mathrm{~m}$, $4 \mathrm{H}, 2 \mathrm{OCH}_{2}$), 5.80 (s, br, 2H, 2 NH), 9.52 (s, br, 2H, 2NH)	$\begin{aligned} & 12.2,12.6,14.4,14.5, \\ & 29.2,29.3,60.6,60.6 \\ & 79.2,87.7,112.1,114.2, \\ & 119.4,133.9,169.0 \\ & 170.0,173.6,174.4 \end{aligned}$	$\begin{aligned} & 3424,3312, \\ & 2976,2224, \\ & 1648,1600 \end{aligned}$	$\begin{aligned} & 457 \\ & \left(\mathrm{M}^{+}+1\right) \end{aligned}$	$\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{~S}_{3}$	$\begin{aligned} & 47.35 \\ & 47.42 \end{aligned}$	$\begin{aligned} & 5.30 \\ & 5.34 \end{aligned}$	$\begin{aligned} & 12.27 \\ & 12.24 \end{aligned}$	$\begin{aligned} & 21.07 \\ & 21.20 \end{aligned}$
7d	$\begin{aligned} & 1.29\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{~J}=7.3 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.40(\mathrm{t}, \\ & \left.3 \mathrm{H}, \mathrm{~J}=7.2 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 4.24-4.35(\mathrm{~m}, \\ & 4 \mathrm{H}, 2 \mathrm{OCH} 2), 6.37(\mathrm{~s}, \mathrm{br}, 2 \mathrm{H}, 2 \mathrm{NH}) \\ & 9.60(\mathrm{~s}, \mathrm{br}, 2 \mathrm{H}, 2 \mathrm{NH}) \end{aligned}$	$\begin{aligned} & 13.0,13.3,60.9,61.0, \\ & 81.2,89.7,110.5,112.7, \\ & 117.8(\mathrm{q}, \mathrm{~J}=278.0 \mathrm{~Hz}), \\ & 118.3,118.6(\mathrm{q}, \mathrm{~J}= \\ & 279.2 \mathrm{~Hz}), 136.1,153.8(\mathrm{q}, \\ & \mathrm{J}=30.6 \mathrm{~Hz}), 154.3(\mathrm{q}, \\ & \mathrm{J}=30.6 \mathrm{~Hz}), 167.0,167.9 \end{aligned}$	$\begin{aligned} & 3408,3264, \\ & 2992,2208, \\ & 1667,1603 \end{aligned}$	$\begin{aligned} & 537 \\ & \left(\mathrm{M}^{+}+1\right) \end{aligned}$	$\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{~F}_{3} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{~S}_{3}$	$\begin{aligned} & 35.82 \\ & 36.01 \end{aligned}$	$\begin{aligned} & 2.63 \\ & 2.61 \end{aligned}$	$\begin{aligned} & 10.44 \\ & 10.62 \end{aligned}$	$\begin{aligned} & 17.93 \\ & 17.85 \end{aligned}$
7e	$1.30\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=7.1 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.38(\mathrm{t}$, $3 \mathrm{H}, \mathrm{J}=7.0 \mathrm{~Hz}, \mathrm{CH}_{3}$), 4.23-4.30 (m, $4 \mathrm{H}, 2 \mathrm{OCH}_{2}$), 5.54 (s, br, 1H, NH), 5.60 (s, br, 1H, NH), 7.27-7.46 (m, $10 \mathrm{H}, \mathrm{ArH}$), 9.40 (s, br, 1H, NH), 9.51 (s, br, 1H, NH)	14.8, 14.9, 61.3, 61.4, $81.8,90.5,112.8,114.1$, 119.6,128.0, 128.3, 129.0, 129.1,130.5, 130.6, 133.7, 137.1,137.4, $169.3,170.3,170.7,171.0$	$\begin{aligned} & 3424,3296, \\ & 2208,1651, \\ & 1590,1504 \end{aligned}$	$\begin{aligned} & 553 \\ & \left(\mathrm{M}^{+}+1\right) \end{aligned}$	$\mathrm{C}_{26} \mathrm{H}_{24} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{~S}_{3}$	$\begin{aligned} & 56.50 \\ & 56.48 \end{aligned}$	$\begin{aligned} & 4.38 \\ & 4.35 \end{aligned}$	$\begin{aligned} & 10.14 \\ & 10.32 \end{aligned}$	$\begin{aligned} & 17.41 \\ & 17.55 \end{aligned}$

form) spectrum showed two triplets at 1.28 and 1.37 ppm and two singlets at 2.22 and 2.45 ppm due to the presence of two ethoxycarbonyl groups and two methyl groups
bonded to two $\mathrm{C}=\mathrm{C}$ double bonds, respectively. The spectroscopic data indicates that compound $\mathbf{7 b}$ is an unsymmetric molecule having the molecular formula

Table 2 (continued)

Compounds	${ }^{1} \mathrm{H}$ NMR (deuteriochloroform) δ (ppm)	${ }^{13}$ C NMR (deuteriochloroform) $\delta(\mathrm{ppm})$	IR (neat) (cm^{-1})	FAB MS ($\mathrm{m} / \mathrm{z}, \%$)	Molecular Formula	Analyses \% Calcd/Found			
						C	H	N	S
7g	$1.31\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=7.1 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.37$ (t, 3H, J = $7.1 \mathrm{~Hz}, \mathrm{CH}_{3}$), $2.35(\mathrm{~s}$, $\left.3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.39\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 4.22-$ $4.29\left(\mathrm{~m}, 4 \mathrm{H}, 2 \mathrm{OCH}_{2}\right), 5.47$ (s, br, $1 \mathrm{H}, \mathrm{NH}$), 5.57 (s, br, $1 \mathrm{H}, \mathrm{NH}$), 7.19- 7.24 (m, 8H, ArH), 9.40 (s, br, 1H, NH), 9.48 (s, br, $1 \mathrm{H}, \mathrm{NH}$)	$\begin{aligned} & 14.3,14.4,21.4,21.4, \\ & 60.7,60.8,81.4,90.0 \\ & 112.3,114.0,119.0,127.6, \\ & 127.9,129.2,129.3,130.4, \\ & 133.3,134.0,140.3, \\ & 140.5,168.9,170.0, \\ & 170.4,170.8 \end{aligned}$	$\begin{aligned} & 3408,3280, \\ & 2928,2208, \\ & 1651,1590 \end{aligned}$	$\begin{aligned} & 581 \\ & \left(\mathrm{M}^{+}+1\right) \end{aligned}$	$\mathrm{C}_{28} \mathrm{H}_{28} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{~S}_{3}$	$\begin{aligned} & 57.91 \\ & 58.03 \end{aligned}$	$\begin{aligned} & 4.86 \\ & 4.87 \end{aligned}$	$\begin{aligned} & 9.65 \\ & 9.57 \end{aligned}$	$\begin{aligned} & 16.56 \\ & 16.49 \end{aligned}$
7h		$\begin{aligned} & \text { 14.3, 14.5, 60.9, 61.1, } \\ & \text { 81.7, 90.1, 112.2, } \\ & \text { 113.7, 119.1, 124.1, } \\ & \text { 126.5, 129.3, 129.5, } \\ & \text { 131.8, 132.0, 133.2, } \\ & \text { 135.5, 135.7, 168.7, } \\ & 168.9,169.3,169.6 \end{aligned}$	$\begin{aligned} & 3392,3208, \\ & 2976,2208, \\ & 1648,1590 \end{aligned}$	$\begin{aligned} & 711 \\ & \left(\mathrm{M}^{+}+1\right) \end{aligned}$	$\mathrm{C}_{26} \mathrm{H}_{22} \mathrm{Br}_{2} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{~S}_{3}$	$\begin{aligned} & 43.95 \\ & 44.13 \end{aligned}$	$\begin{aligned} & 3.12 \\ & 3.18 \end{aligned}$	$\begin{aligned} & 7.89 \\ & 7.80 \end{aligned}$	$\begin{aligned} & 13.54 \\ & 13.42 \end{aligned}$
7 i	$\begin{aligned} & 1.28\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{~J}=6.8 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.34(\mathrm{t}, \\ & \left.3 \mathrm{H}, \mathrm{~J}=6.8 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 4.18-4.30 \\ & \left(\mathrm{~m}, 4 \mathrm{H}, 2 \mathrm{OCH}_{2}\right), 5.78(\mathrm{~s}, \mathrm{br}, 1 \mathrm{H}, \\ & \mathrm{NH}), 5.91(\mathrm{~s}, \mathrm{br}, 1 \mathrm{H}, \mathrm{NH}), 7.65- \\ & 7.75(\mathrm{~m}, 4 \mathrm{H}, \mathrm{ArH}), 8.16(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH}), \\ & 8.23(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH}), 8.31-8.33(\mathrm{~m}, \\ & 2 \mathrm{H}, \mathrm{ArH}), 9.39(\mathrm{~s}, \mathrm{br}, 1 \mathrm{H}, \\ & \mathrm{NH}), 9.50(\mathrm{~s}, \mathrm{br}, 1 \mathrm{H}, \mathrm{NH}) \end{aligned}$	$\begin{aligned} & \text { 14.3, 14.4, 61.1, } \\ & \text { 61.3, 82.3, 90.7, } \\ & \text { 112.0, 113.3, 119.3, } \\ & \text { 123.1, 123.1, 125.0, } \\ & \text { 125.0, 130.0, 130.1, } \\ & \text { 132.5, 133.7, 134.0, } \\ & \text { 137.8, 138.0, 147.9, 147.9, } \\ & \text { 167.3, 167.5, 168.4, } 169.2 \end{aligned}$	$\begin{aligned} & 3424,3296, \\ & 2208,1654, \\ & 1590,1526 \end{aligned}$	$\begin{aligned} & 643 \\ & \left(\mathrm{M}^{+}+1\right) \end{aligned}$	$\mathrm{C}_{26} \mathrm{H}_{22} \mathrm{~N}_{6} \mathrm{O}_{8} \mathrm{~S}_{3}$	$\begin{aligned} & 48.59 \\ & 48.71 \end{aligned}$	$\begin{aligned} & 3.45 \\ & 3.43 \end{aligned}$	$\begin{aligned} & 13.08 \\ & 13.20 \end{aligned}$	$\begin{aligned} & 14.97 \\ & 15.14 \end{aligned}$

[a] Dimethyl- d_{6} sulfoxide was used for ${ }^{1} \mathrm{H} \mathrm{nmr}$ solvent. [b] Potassium bromide was used for IR.
$\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{~S}_{3}$, which was supported by the analytical data. The same reaction tendencies were observed for the reactions with other β-enamino esters in dichloromethane. The two broad signals at $5.43-6.37 \mathrm{ppm}$ and $9.17-9.60$ ppm exhibited by compounds 4 may be assigned to be a free NH and a NH proton forming hydrogen bond, respectively. From the reaction with ethyl 3-amino-3-phenylpropenoate $2 \mathrm{e}\left(\mathrm{R}^{1}=\mathrm{Ph}, \mathrm{R}^{2}=\mathrm{Et}, \mathrm{R}^{3}=\mathrm{H}\right)$ was isolated isothiazole-5-carbonitirle derivative 8 (15% yield), analogous to 5-cyano-3-methylisothiazole-4-carboxylate reported [5]. Quantities of the reactants, reaction times, and yields of products $\mathbf{4}$ and $\mathbf{7}$ are summarized in Table 1 and the spectroscopic (${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C} \mathrm{nmr}, \mathrm{ir}, \mathrm{ms}$) and analytical data of $\mathbf{4}$ and $\mathbf{7}$ are summarized in Table 2.

Compounds $\mathbf{4 j} \mathbf{j}$ were prepared albeit in low yields from compound $\mathbf{1 b}$ and ethyl 3-substituted aminocrotonates $\mathbf{2 j} \mathbf{j} \mathbf{I}$ [6] in order to obtain a single crystal. Among these, only compound $\mathbf{4 l}$ gave a single crystal whose crystal structure is shown in Figure 1. Crystal and refinement parameters for compound 41 and atomic coordinates and equivalent isotropic thermal parameters of nonhydrogen atoms of 41 are listed in Table 3 and 4, respectively. Selected bond distances and angles of $\mathbf{4 1}$ are tabulated in Table 5 and 6, respectively. The X-ray crystal structure of compound $\mathbf{4 1}$ clearly indicates that the stereochemistry around the $\mathrm{C}=\mathrm{C}$ double bond bearing two CN groups is cis and the amino groups are cis to the ethoxycarbonyl groups. The cis relationship between the amino and the ethoxycarbonyl groups is consistent with the

Table 3
Crystal and Refinement Parameters for Compound 41

Molecular formula	$\mathrm{C}_{28} \mathrm{H}_{26} \mathrm{Cl}_{2} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{~S}_{2}$	Z	2
Molecular weight	617.55	ρ calc. $\mathrm{g} \mathrm{cm}^{-3}$	1.355
Temperature	293(2) K	Crystal size, mm	$0.1 \times 0.2 \times 0.2$
Wavelength	0.71070 A	Scan type	w/2q
Crystal system	Triclinic	θ range, deg	1.78 to 20.00
Space group	P $\overline{1}$	$\mathrm{m}\left(\mathrm{Mo}-\mathrm{K}_{a}\right) \mathrm{mm}^{-1}$	0.392
a, \AA	11.102(3)	N_{b} of measured reflections	2820
b, A	12.537(12)	N_{b} of reflections used $\mathrm{F}_{\mathrm{o}}>3 \sigma\left(\mathrm{~F}_{\mathrm{o}}\right)$	2810
c, A	12.790(15)	N_{b} of refined parameters	361
α, deg	116.28(9)	R	0.2427
β, deg	98.03(5)	Rw	0.3688
γ, deg	71.55(3)	Diffractometer	Enraf-Nomius CAD-4
V, \AA^{3}	1514(2)		

Figure 1. Molecular structure of compound $\mathbf{4 I}$ with the atomic numbering scheme.

Table 4
Positional and Equivalent Isotropic Thermal Parameters of Nonhydrogen Atoms for $\mathbf{4 l}$

Atom	X	Y	Z	$\mathrm{U}_{\mathrm{eq}}\left(\AA^{2}\right)$	Atom	X	Y		
$\mathrm{S}(1)$	$0.4810(4)$	$0.2712(5)$	$0.0930(4)$	$0.064(2)$	$\mathrm{C}(9)$	$0.3228(15)$	$0.3199(19)$	$0.0543(14)$	$0.052(5)$
$\mathrm{S}(2)$	$0.7196(4)$	$0.2135(5)$	$0.2537(4)$	$0.062(2)$	$\mathrm{C}(10)$	$0.2709(20)$	$0.4549(22)$	$0.0767(14)$	$0.065(6)$
$\mathrm{Cl}(1)$	$-0.2174(6)$	$-0.0382(7)$	$-0.2128(6)$	$0.119(2)$	$\mathrm{C}(11)$	$0.3095(28)$	$0.6449(23)$	$0.1487(31)$	$0.158(14)$
$\mathrm{Cl}(2)$	$1.3204(6)$	$0.5076(6)$	$0.8154(6)$	$0.112(2)$	$\mathrm{C}(12)$	$0.3518(44)$	$0.7125(32)$	$0.2323(39)$	$0.291(34)$
$\mathrm{O}(1)$	$0.1590(12)$	$0.4988(11)$	$0.0567(10)$	$0.071(4)$	$\mathrm{C}(13)$	$0.4638(15)$	$0.3090(17)$	$0.2403(15)$	$0.063(5)$
$\mathrm{O}(2)$	$0.3528(12)$	$0.5163(13)$	$0.1208(13)$	$0.094(5)$	$\mathrm{C}(14)$	$0.3415(26)$	$0.3657(24)$	$0.2905(19)$	$0.100(8)$
$\mathrm{O}(3)$	$0.8522(11)$	$0.0608(13)$	$0.4706(12)$	$0.089(5)$	$\mathrm{C}(15)$	$0.5673(14)$	$0.2945(20)$	$0.3153(18)$	$0.077(6)$
$\mathrm{O}(4)$	$0.6959(11)$	$0.0460(12)$	$0.3393(11)$	$0.077(4)$	$\mathrm{C}(16)$	$0.5484(16)$	$0.3354(21)$	$0.4353(21)$	$0.082(7)$
$\mathrm{N}(1)$	$0.1297(14)$	$0.2757(15)$	$-0.0225(12)$	$0.075(5)$	$\mathrm{C}(17)$	$0.8082(16)$	$0.1918(19)$	$0.3726(14)$	$0.061(6)$
$\mathrm{N}(2)$	$0.2385(20)$	$0.4073(29)$	$0.3277(21)$	$0.173(13)$	$\mathrm{C}(18)$	$0.7896(16)$	$0.0953(19)$	$0.0398(17)$	$0.069(6)$
$\mathrm{N}(3)$	$0.5321(16)$	$0.3605(21)$	$0.5281(17)$	$0.118(8)$	$\mathrm{C}(19)$	$0.6652(22)$	$-0.0397(25)$	$0.3733(26)$	$0.132(10)$
$\mathrm{N}(4)$	$0.9691(13)$	$0.2289(15)$	$0.5119(13)$	$0.072(5)$	$\mathrm{C}(20)$	$0.5511(28)$	$-0.0595(36)$	$0.3217(33)$	$0.212(18)$
$\mathrm{C}(1)$	$-0.1181(19)$	$0.0532(19)$	$-0.1569(19)$	$0.071(6)$	$\mathrm{C}(21)$	$0.8956(16)$	$0.2532(17)$	$0.4271(16)$	$0.058(5)$
$\mathrm{C}(2)$	$-0.1085(21)$	$0.1178(21)$	$-0.0405(19)$	$0.087(7)$	$\mathrm{C}(22)$	$0.9061(16)$	$0.3596(19)$	$0.4065(17)$	$0.084(7)$
$\mathrm{C}(3)$	$-0.0242(21)$	$0.1856(20)$	$0.0033(17)$	$0.083(6)$	$\mathrm{C}(23)$	$1.0569(17)$	$0.0297(20)$	$0.5813(20)$	$0.066(6)$
$\mathrm{C}(4)$	$0.0417(19)$	$0.2017(18)$	$-0.0692(21)$	$0.068(5)$	$\mathrm{C}(24)$	$1.1637(18)$	$0.2918(20)$	$0.5405(17)$	$0.080(6)$
$\mathrm{C}(5)$	$0.0275(18)$	$0.1439(18)$	$-0.1834(18)$	$0.067(5)$	$\mathrm{C}(25)$	$1.2467(16)$	$0.3537(21)$	$0.6149(22)$	$0.083(7)$
$\mathrm{C}(6)$	$-0.0574(18)$	$0.0708(19)$	$-0.2290(16)$	$0.069(6)$	$\mathrm{C}(26)$	$1.2162(20)$	$0.4302(20)$	$0.7327(21)$	$0.071(6)$
$\mathrm{C}(7)$	$0.2529(17)$	$0.2403(21)$	$0.0050(14)$	$0.072(6)$	$\mathrm{C}(27)$	$1.1118(22)$	$0.4282(20)$	$0.7665(17)$	$0.080(6)$
$\mathrm{C}(8)$	$0.3032(18)$	$0.1037(17)$	$-0.0182(18)$	$0.088(7)$	$\mathrm{C}(28)$	$1.0253(17)$	$0.3678(21)$	$0.6981(21)$	$0.077(6)$

Table 5
Selected Bond Distances (\AA) for 41

Atom 1	Atom 2	Distance	Atom 1	Atom 2	Distance
S1	C9	$1.745(16)$	C9	C10	$1.509(24)$
S1	C13	$1.750(18)$	C13	C15	$1.410(22)$
S2	C15	$1.756(17)$	C17	C18	$1.365(4)$
S2	C17	$1.770(14)$	C17	C21	$1.353(23)$
C7	C9	$1.338(23)$			

appearance of the NH proton signal so downfield at 11.87 ppm due to the formation of a hydrogen bond.

The mechanism for the formation of compounds 4 may be explained by a nucleophilic attack of the enamino carbon of compounds $\mathbf{2}$ on $\mathrm{S}-1$ of the thione $\mathbf{1 b}$ (path a) to give cyanoformyldithiolate $\mathbf{9}$ as an intermediate, which is subsequently attacked by nucleophile(s), presumably chloride ion, generating a carbanion 10 (Scheme 2). The resulting anion may be stabilized by electron-withdrawing

Table 6
Selected Bond Angles (deg) for $\mathbf{4 l}$

CN group. Subsequent nucleophilic attack of the carbanion 10 on another molecule of an intermediate 9 would give rise to thiolate 11, which undergoes an intramolecular $\mathrm{S}_{\mathrm{N}} 2$ type displacement, followed by cleavage of the C-S bond of thiirane 12, generating a carbanion, from which cis products 4 are formed. An analogous mechanism was proposed for the formation of cis-2,3-bis(dimethylthio)-2-butenedinitrile when a mixture of sodium cyanide and carbon disulfide was treated with methyl iodide [7]. Likewise, the formation of compound 7 can be explained by the same mechanistic pathway shown by path b.

It has been found that compounds $\mathbf{7 a}$ and $\mathbf{7 e}$ in acetonitrile were converted to compounds $\mathbf{4 a}$ (61%) and $\mathbf{4 e}$ (84%), respectively, by heating at reflux. This result suggests that one can significantly increase yields of compounds $\mathbf{4}$ by the same treatment.

In summary, it has been found that treatment of 4-chloro-4H-1,2,3-dithiazole-5-thione 1b with alkyl 3-alkyl (or aryl)-3-amino-2-propenoates in the presence of pyridine (2 equivalents) in dichloromethane at reflux gave cis-bis(2,3-dial-kenylthio)-2-butenedinitriles, which may be utilized as starting materials for the synthesis of a new type of alkenylthioporphyrazines, being important in diverse areas [4].

EXPERIMENTAL

The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C} \mathrm{nmr}$ spectra were recorded at 300 MHz and 75 MHz in deuteriochloroform solution containing tetramethylsilane as an internal standard, respectively; J-values are given in Hz . Infrared spectra were recorded in potassium bromide or for thinfilm samples on potassium bromide plates. Mass spectra were obtained by electron impact at 70 eV . Fab mass and elemental analyses were determined by the Inter-University Center for Natural Science Research Facilities, Seoul National University. Column chromatography was performed using silica gel (Merck, 230-400 mesh, ASTM). Melting points were determined on a Fisher-johns melting point apparatus and are uncorrected. Solvents were pre-dried over sodium. 4-Chloro-5H-1,2,3-dithia-zole-5-thione 1b [2], methyl 3-benzylaminocrotonate 2j [6], methyl 3-isopropylaminocrotonate $\mathbf{2 k}$ [6], and methyl 3-(4chloroanilino)crotonate 21 [6], were prepared according to the literature procedure.
Reaction of 4-Chloro-5H-1,2,3-dithiazole-5-thione (1b) with Ethyl 3-Aminocrotonate (2b).

To a solution of compound $\mathbf{1 b}$ ($294 \mathrm{mg}, 1.62 \mathrm{mmoles}$) in dimethyl sulfoxide (10 ml) was added amino ester $\mathbf{2 b}$ (542 mg , 4.20 mmoles). The mixture was stirred for 4 days at room temperature. After addition of dichloromethane (50 ml), the mixture was washed with water ($3 \times 40 \mathrm{ml}$). The dichloromethane layer was dried over magnesium sulfate. Evaperation of the solvent gave a residue, which was chromatographed on a silica gel column ($3 \times 15 \mathrm{~cm}$). Elution with n-hexane and a mixture of n hexane and ethyl acetate (3:1) gave sulfur ($6 \mathrm{mg}, 6 \%$), and unreacted 2b ($123 \mathrm{mg}, 23 \%$), respectively. Subsequent elution with the same solvent mixture (3:1) gave 3,5-diethoxycarbonyl-2,6-dimethyl-1,4-thiazine (5) (44 mg, 10\%) [1]. Elution with the same solvent mixture (2:1) gave unknown mixtures (56 mg) and 2-amino-1-ethoxycarbonyl-1-propenyl tetrasulfide (6) (67 mg , 13%), which was recrystallized from dichloromethane - n hexane: mp 130-132 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \mathrm{nmr}$ (deuteriochloroform): $\delta 1.30$ (t, $6 \mathrm{H}, \mathrm{J}=7.1 \mathrm{~Hz}, 2 \mathrm{CH}_{3}$), $2.33\left(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{CH}_{3}\right), 4.22(\mathrm{q}, 4 \mathrm{H}, \mathrm{J}=7.1$ $\mathrm{Hz}, 2 \mathrm{OCH}_{2}$), $5.61(\mathrm{~s}, 2 \mathrm{H}, 2 \mathrm{NH}), 9.45(\mathrm{~s}, 2 \mathrm{H}, 2 \mathrm{NH})$; ir (potassium bromide): $3392,3296,1613,1488,1360,1248,1069 \mathrm{~cm}^{-1}$; fab ms $m / z 385\left(\mathrm{M}^{+}+1\right)$.
Anal. Calcd. for $\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}_{4}$: C, 37.48; H, 5.24; N, 7.28; S, 33.35. Found: C, 37.40 ; H, 5.24; N, 7.21; S, 33.50.

Continuous elution with the same solvent mixture (2:1) gave ethyl 3-amino-2-[2-(2-amino-1-ethoxycarbonylpropenyl-sul-fanyl)-1,2-dicyanovinylsulfanyl]-2-butenoate (4b) ($58 \mathrm{mg}, 18 \%$). Consult Table 2 for the spectroscopic and analytical data of $\mathbf{4 b}$.
General Procedure for the Reaction of Substrate 1b with β Enamino Esters 2 in Dichloromethane.
To a solution of thione $\mathbf{1 b}$ ($0.60-1.66 \mathrm{mmoles}$) in dichloromethane (5 ml) was added β-enamino ester 2 ($0.69-2.45$ mmoles) and pyridine (1.86-3.70 mmoles) in a sequence. The reaction mixture was heated at reflux until the spot corresponding to compound $\mathbf{1 b}$ had disappeared on thin layer chromatogram (silica gel, $\mathrm{R}_{\mathrm{f}}=0.72$, ethyl acetate: n-hexane $=1: 3$) except for the reaction mixture containing compounds $\mathbf{2 a}, \mathbf{2 j}, \mathbf{2 k}$ and $\mathbf{2 l}$, which were stirred at room temperature. After the solvent was removed
in vacuo, the residue was chromatographed on a silica gel (230400 mesh, $3 \times 15 \mathrm{~cm}$). Elution with n-hexane and a mixture of n-hexane and ethyl acetate (5:1) as an eluent gave sulfur and unreacted ester 2, respectively. Subsequent elution with the same solvent mixture (3:1) gave unknown mixture, 3-amino-2-[2-(2-amino-1-ethoxycarbonylpropenylsulfanyl)-1,2-dicyanovinylsul-fanyl]-2-butenoic ethyl esters (4) and 3-amino-2-[2-(2-amino-1-ethoxycarbonylpropenylsulfanyl)-1,2-dicyanovinyldisulfanyl]-2butenoic ethyl esters (7). Consult Table 1 for reaction conditions and yields and melting points and Table 2 for the spectroscopic and analytical data of compounds 4 and 7.

General Procedure for Conversion of Disulfides 7 into Sulfides 4.

A solution of compounds 7 ($0.075-0.080 \mathrm{mmole}$) in acetonitrile (10 ml) was heated for an appropriate time at reflux until no spot corresponding to compounds 7 had observed on thin layer chromatogram (silica gel, n-hexane:ethyl acetate $=2: 1$). Removal of the solvent in vacuo gave a residue, which was chromatographed on a silica gel column ($70-230$ mesh, $3 \times 10 \mathrm{~cm}$). Elution with n-hexane gave a trace amount of sulfur. Subsequent elution with a mixture of n-hexane and ethyl acetate (1:1) gave compounds 4 .

In accordance with the above general procedure, heating compound $7 \mathbf{7 a}$ ($30 \mathrm{mg}, 0.075 \mathrm{mmole}$) for 48 hours at reflux gave compound $\mathbf{4 a}(17 \mathrm{mg}, 61 \%)$. Similarly heating $7 \mathrm{e}(44 \mathrm{mg}, 0.080$ mmole) for 6 hours at reflux gave $\mathbf{4 e}(35 \mathrm{mg}, 84 \%)$.
X-Ray Structure Determination of Compound $4 \mathbf{1}$.
The data were collected on an Enraf-Nomius CAD4 diffractometer using graphite-monochromated $\mathrm{Mo}-\mathrm{K}_{\alpha}$ radiation. The structure was solved by direct methods and subsequent Fourier maps. Refinements were carried out by full-matrix least squares techniques. Non-hydrogen atoms were anisotropically refined. Atomic scattering factors were taken from International Tables for X-ray Crystallography, Vol IV, 1974. All calculations and drawings were performed using a Micro VAX II computer with the SDP system. Crystallographic and refinement parameters are summarized in Table 3.

Acknowledgement

This work was financially supported by the Brain Korea 21 Program.

REFERENCES AND NOTES

[1] Y. S. Park and K Kim, Tetrahedron Letters, 40, 6439 (1999).
[2] H.-S. Lee and K. Kim, Tetrahedron Letters, 37, 3709 (1996).
[3] W. Wolf, E. Degener and S. Petersen, Angew. Chem., 72, 963 (1960).
[4a] C. S. Veláquez, G. A. Fox, W. E. Broderick, K. A. Andersen, O. P. Anderson, A. G. M. Barrett, and B. M. Hoffman, J. Am. Chem. Soc., 114, 7416 (1992); [b] T. P. Forsyth, B. G. Williams, A. G. Montalban, C. L. Stern, A. G. M. Barrett, and B. M. Hoffman, J. Org. Chem., 63, 331 (1998).
[5] D. Clarke, K. Emayan, and C. W. Rees, J. Chem. Soc., Perkin Trans. 1, 77 (1998).
[6] H. A. Sukari and J. M. Vernon, Tetrahedron, 39, 793 (1983).
[7] H. E. Simmons, D. C. Blomstrom, and R. D. Vest, J. Am. Chem. Soc., 84, 4756 (1962).

